
1

Comparison Between the Run Time Efficiency of Scan-line Filling

Algorithms Realized by Segment Tree and VEB Tree

Extended Essay

Subject: IB Computer Science

Exam Session: May 2018

Word Count: 3996

2

Table of Contents:

I. Introduction

II. Background

1. Scan-line Filling Algorithm

2. Segment tree

3. VEB Tree

III. Realizing Scan-line Filling Algorithm through Two Different Data Structures

1. Realizing Scan-line Filling Algorithm by Segment tree

2. Realizing Scan-line Filling Algorithm by VEB tree

IV. Proofs and Comparisons between the Theoretical Run Time Requirements of

the Two Realizations

1. Scan-line Filling Realized by Segment Tree

2. Scan-line Filling Realized by VEB Tree

3. Comparison

V. Testing Real Time Performances of Two Realizations

1. Testing Environment

2. Testing Methods and Chosen Inputs

3. Results and Comparisons

i. Random Input

ii. Neat Input

iii. Extreme Input

VI. Conclusion

3

VII. Limitation and Evaluation

VIII. Bibliography

IX. Appendix

1. Java Implementation of VEB Node Structure

2. Java Implementation of VEB Tree Methods

3. Java Implementation of Segment Tree Structure

4. Java Implementation of Segment Tree Methods

4

I. Introduction:

Scan-line Filling Algorithm is an important algorithm in computer graphics which

can calculate total areas of overlapping regions. The basic scan-line filling algorithm is

frequently used in algorithm contests, where real time scan-line rendering is used in

televisions, allowing televisions to generate image without framebuffers. 1

Because of the development of technology and the expansion of data, times and

resources required to process data become increasingly important. Initially, scan-line

filling algorithm is realized through segment tree, which has run time requirement

O(log 𝑛). (In this essay, 𝑙𝑜𝑔2𝑛 is written as log 𝑛) With such data structure, scan-line

filling algorithm has run time requirement O(n log 𝑛). 2

However, VEB tree3 is a tree data structure that is more efficient than segment tree,

which ensures an efficiency of O(log log 𝑛) for all operations.

So, this extended essay will realize scan-line filling algorithm by VEB tree, prove

and solve the run time requirement of scan-line filling algorithms realized by VEB tree

and then test such algorithms through experiments. Experiment trials are conducted

based on randomly generated data, which represents normal situations, and on neat data

1 “Scanline Rendering.” Wikipedia, Wikimedia Foundation, 28 June 2017,

en.wikipedia.org/wiki/Scanline_rendering#Use_in_realtime_rendering.
2 “Understanding Segment Tree Step by Step.” Understanding Segment Tree Step by Step, Cnblogs, 1 Dec. 2013,

22:30, www.cnblogs.com/TenosDoIt/p/3453089.html.
3 Van Emde Boas Tree (VEB Tree) is a data structure proposed by Dutch computer theorist Peter Van Emde Boas

in 1975.

5

and extreme data, which represents special cases. Through both theoretical and real

time comparisons, this extended essay discusses in what situations and to what extent

can VEB tree change or improve the run time requirement of scan-line filling

algorithms.

6

II. Background:

1. Scan-line Filling Algorithm

Scan-line Filling Algorithm is an algorithm that process areas of regions, such as

Figure 1 below, which contains 5 regions overlapping with each other.

Figure 1: A Typical Graph that can be Analyzed by Scan-line Filling

Because of the overlapping regions, Scan-line Filling algorithm is responsible for

avoiding calculating overlapping areas repeatedly. So, the concept of “Scan-line” is

introduced to “scan” the graph from bottom to top.

Figure 2: Scan-lines of an Overlapping Figure

7

For example, for a typical 5-region figure such as Figure 1, 9 scan-lines from bottom

to top with names L1, L2, … L9 are created, as illustrated by Figure 2. A scan-line is

created when an edge of a region is met, and then scan-lines are sorted with an

increasing order regarding their heights. Each scan-line has the following properties:

𝑥1, 𝑥2, h and flag, as shown by Figure 3.

Figure 3: Properties of Scan-lines

𝑥1 of a scanline is the x-coordinate of the left end point of the edge where the scan-

line intersects with one of the regions, while 𝑥2 is the right end-point. H is the height,

which is also the y-coordinate of a scan-line. The indicator flag indicates whether the

scan-line meets the upper edge or the lower edge of a region.

8

Figure 4: How scan-lines are used to calculate total area

With the help of scan-lines, the figure can be separated into areas that can be

calculated by A = ∑ ∆𝑥 ∙ ∆ℎ. So, scan-lines are responsible to calculate ∆x and ∆h.

A new set cnt stores all x-coordinates that acts as the indicator of which x-coordinate

should be calculated into ∆x. Whenever a lower edge is met, which means a scan-line

with flag = 1 is met, the x-coordinates from 𝑥1 to 𝑥2 should be inserted into cnt.

Else, the x-coordinates from 𝑥1 to 𝑥2 should be deleted from cnt. Then, ∆x can be

calculated from all x-coordinates that are inserted but not deleted from cnt. While ∆h

can be easily calculated by ℎ𝑖+1 − ℎ𝑖, each colored region in Figure 4 can be calculated

by ∆x ∙ ∆h, and the total area can be calculated by A = ∑ ∆𝑥 ∙ ∆ℎ

2. Segment Tree

The structure of segment tree is shown by the following diagram:

∆𝑥1

∆ℎ1

9

Figure 10: Segment Tree Structure4

Segment Tree is a data structure that stores data in its leaves and stores summaries

in parent nodes. To store n elements, for example 10 elements, which are originally

stored in an array B[], according to Figure 10, we should consider the numbers in

Figure 10 indexes of B[]. Leaves of the tree, each containing a single number, are

used to store data of B[1], B[2], ... , B[10]. Their parents store some properties of its

children, such as the maximum, minimum values in its subtree or the sum of its

subtree. For each non-leaf node in a segment tree, its left child maintains the first half

of the array it is maintaining, and its right child maintains the second half. So,

segment tree is a form of balanced binary tree. For example, for root node [1,10],

which stores properties (maximum, minimum, sum) of all elements from B[1] to

B[10], its left child stores properties from B[1] to B[5], and its right child stores

properties from B[6] to B[10].

4 “Segment Tree Summary.” Segment Tree Summary, Cnblogs, 19 Aug. 2017, 15:17,

www.cnblogs.com/yiyiyizqy/p/7396693.html.

10

Figure 11: A Complete Segment Tree

Figure 11 is an example of a complete segment tree, which again stores A[]={2, 3,

4, 5, 7, 14, 15}. As we can see, all leaves have the same min, max and sum values,

meaning that they store single values. Parent nodes store summaries of all its children.

Left and right subtrees each maintain half of their parent.

Segment tree is realized through a node array tree[], which is an array that stores all

tree nodes. Inside each node, we can store the interval, max, min and sum as integers.

As shown in Figure 11, each node is given an index, where the indexes follow an

increasing order from parents to children (from left to right among nodes with same

hierarchies). So, for each node that is not leaf with index i, it’s left and right children

have indexes 2i and 2i+1 respectively.

Though common segment trees maintain properties such as max, min and sum,

properties that can be maintained are not restricted to the three listed above. For scan-

line filling algorithm, cnt introduced in Section II.1 should be maintained, whereas

11

max and min are not necessary.

*(Detailed realization of segment tree see Appendix A.3, A.4)

Methods of segment tree, such as update(), has run time requirement of O(log 𝑛).

Segment tree, as a balanced binary tree with universe size u, has height 𝑙𝑜𝑔2𝑢. As

only one branch of the tree is traversed in update(), the running time shall not exceed

𝑙𝑜𝑔2𝑢.

3. VEB Tree

(1) Superimposing a Tree on an Array

Before introducing VEB tree, it is essential to firstly understand the implementation

of superimposing a tree of constant height above a bit-vector.

Figure 5: Super-imposing a Binary Tree upon a Bit-array5

Suppose array A includes u elements. A dynamic set of values are stored in this

5 Cormen, Thomas H., et al. Introduction to Algorithms. China Machine Press, 2016.

12

array A[0, 1, 2, …, u-1]. The value of A[x]=1 if x is included in the dynamic set. In

the case shown by the diagram, the array A contains 16 indexes and the dynamic set

of {2, 3, 4, 5, 7, 14, 15} is stored. If all indexes of array A is taken as leaves of a

binary tree, we can create a tree as Figure 5. Each parent node stores the “logic-or” of

its children.

This data structure can already ensure an efficiency of O(log 𝑛) for operations of

locating a value such as predecessor and successor. The path in the diagram shows the

algorithm for locating the predecessor of 14. The worst case has the efficiency

O(log 𝑛), as only one way up and one way down is analyzed.6

Figure 6: Super-imposing a tree with each Node having √𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ Children7

If we make the length of the array A u = 22𝑘
, then instead of a binary tree, we can

build another tree, in which each parent node has √𝑢 children, a tree of height 2 is

built. Still, each node contains the “logic-or” of all its children. Similarly, we can

further operate this tree into the data structure shown in the following diagram:

7 Cormen, Thomas H., et al. Introduction to Algorithms. China Machine Press, 2016.

13

Figure 7: Using an Array to Store Parent Nodes8

An array of summary[] is used to store the “or-logic” of its children. Each element

of summary[] stores the “or-logic” of its √𝑢 children called a cluster. Each cluster

contains √𝑢 bits and summary[] also contains √𝑢 bits. We can use an integer i to

represent the number of cluster.

This structure is already similar to the structure of VEB tree, and it has time O(√𝑢)

for operations of minimum, maximum and delete:

-To find the minimum (maximum) value, find the leftmost (rightmost) entry in

summary that contains a 1, say summary[i], and then do a linear search within the ith

cluster for the leftmost (rightmost) 1.

-To delete x, let i = ⌊
𝑥

√𝑢
⌋. Set A[x] to 0 and then set summary[i] to the logical-or of

the bits in the ith cluster.

Here, we introduce two important functions high(x), low(x), in which:

high(x) = ⌊
𝑥

√𝑢
⌋

low(x) = x mod √𝑢

Because each cluster has √𝑢 elements, high(x) shows the index of cluster that x

belongs to, and low(x) shows the index of x inside its own cluster.

8 Cormen, Thomas H., et al. Introduction to Algorithms. China Machine Press, 2016.

14

(2) VEB Tree structure

Similar to imposing a tree on a bit array, each node of VEB Tree has a structure as

shown in the following diagram.

Figure 8: VEB Tree Node Structure

U stores an integer value, which illustrates the number of total elements in the part

of bit array that this tree is imposed on.

Min (max) stores an integer value of the minimum (maximum) index in its subtree.

The summary and cluster pointers, which point towards other VEB structures, work

similarly as the arrays discussed in superimposing a tree, which are the indicators of

whether there are elements in their subtrees.

Pointer towards

VEB structure
Pointers towards

VEB structure

15

Figure 9: VEB Tree Structure9

For example, Figure 9 is an example of a full VEB tree representing data {2, 3, 4,

5, 7, 14, 15}. Each node except leaves contain a summary pointer which summarize

the behaviors of its subtree. When u=2, which means that the leaves are reached, the

binary values of 0 and 1 indicates whether the element is included or not.

*(Detailed realization of VEB tree see Appendix A.1, A.2)

(3) Run Time Requirement of VEB Tree Methods

Here, we take method contain(), which returns whether an element is stored or not,

as an example. To search for an element, a recursive structure should be implemented

in order to search through each layers of the trees.

9 Cormen, Thomas H., et al. Introduction to Algorithms. China Machine Press, 2016.

16

Line 2 to 5 refer to the base cases of this method. Line 2 to 3 refer to the case where

the element is found, and line 4 to 5 refer to the case where one of the leaves of the tree

is reached and the element is not found.

Suppose a function 𝑇(𝑢) that calculates the running time requirement, we have the

following equation for 𝑇(𝑢) due to the nature of recursion:

𝑇(𝑢) = 𝑇(√𝑢) + 𝑂(1)

Substituting u by u = 2𝑛, we have

𝑇(2𝑛) = 𝑇
(2

𝑛
2)

+ 𝑂(1)

Now if we define a new function 𝐹(𝑘) such that 𝐹(𝑛) = 𝑇(2𝑛), we obtain

𝐹(𝑛) = 𝐹 (
𝑛

2
) + O(1)

Because the size halves for each recursive step, we have

𝐹(𝑛) ∈ 𝑂(log 𝑛)

Substituting back to 𝑇(𝑢), we have

𝑇(𝑢) = 𝑇(2𝑛) = 𝐹(𝑛) ∈ 𝑂(log 𝑛)

Because n = log2 𝑢, so 𝑇(𝑢) ∈ 𝑂(log(log2 𝑢))

And Thus, we obtain the running time requirement for this method

𝑇(𝑢) ∈ 𝑂(log log 𝑢)

Similarly, other methods also have run time requirement O(log log 𝑢), because all

recursive methods are run on a universe size of √𝑢.

17

III. Realizing Scan-line Filling Algorithm by Segment Tree and VEB Tree

1. Realizing Scan-line Filling Algorithm by Segment tree

The following Classes are realizations of scan-line filling algorithm using segment

tree. Class Node is the structure of scan-lines. Class ScanLineFillingSegmentTree is the

body of such algorithm.

Class Node, as the structure for Scan-line, contains all necessary variables explained

in Section II.1.

18

19

In Class ScanLineFillingSegmentTree, line 2-8 contains all variables and arrays

required for such algorithm. MAXN is a constant that represents the universe size of

the coordinate system that is used to calculate areas. X[] is an array that stores the values

of 𝑥1 and 𝑥2 of all scan-lines. List Nodes stores all scanlines. Instead of tree[], the

segment tree here maintains cnt[] and sum[]. As explained in Section II.1, cnt[i]

indicates whether the x-coordinate i should be calculates, and sum[] of a tree node stores

the total length of segments that should be calculated in its children. Source[] and

numOfMaps are inputs of this algorithm.

Line 14-64 is the methods of segment tree, which allow us to update the segment tree

when scan-lines are inputted. Note that the “pushup” and “pushdown” procedures are

20

created to help methods build() and update() to updates parent or child nodes

conveniently. Line 81-122 is the main method of this algorithm. Line 86-104 read in

inputs and store them into X[] and list nodes. Line 105-106 sorts X[] and list nodes in

an increasing order. Line 107-109 delete repeating elements in X[]. Line 110 builds an

empty segment tree. Integer ret, which is the final result, is created in line 111. Line 112

creates a loop that traverse through all scan-lines in list Nodes. Line 114-116 update 𝑥1

through 𝑥2 of a scan-line into the segment tree. Line 118 calculates the area. Sum[1],

which is the sum element of the root of the segment tree that equals the total length of

the x-coordinates that should be calculated as ∆x , and nodes. get(i + 1). h −

nodes. get(i). h = ∆h.

2. Realizing Scan-line Filling Algorithm by VEB tree

The following Classes realize scan-line filling algorithm by VEB tree. Class Scanline

is same as the class Node in Section III.1. Class Node here is the structure of VEB tree

node. Class ScanlineFillingVebTree is the body of this realization.

21

22

In the body of scan-line filling algorithm above, line 2-8 creates all variables and

arrays needed, and line 13-82 are methods of VEB tree.

23

In the main method of this algorithm, the purpose of line 85-104 has the same

purpose as the scan-line filling algorithm realized by segment tree, which is to read in

input and sort data. Line 105 create a sum variable, which have the same purpose as the

sum[1] in segment tree: to return the value of ∆x . While considering the set cnt

introduced in Section II.1, the method contain() serves as the same purpose, which

stores the x-coordinates that should be calculated. Line 106-112 updates the VEB tree

according to each scan-line. If the flag value of a scan-line is 1, we insert all coordinates

from 𝑥1 to 𝑥2 into the tree. Else, we delete the coordinates. Line 114-116 update the

value of sum according to the x-coordinates that are stored in the tree, and line 117

calculate the result.

24

IV. Proofs and Comparisons between the Theoretical Run Time Requirements

of the Two Realizations

1. Scan-line Filling Realized by Segment Tree

Suppose 𝑇1(𝑢) is the run time requirement of segment tree methods of universe size

u. 𝑇2(𝑢) is the run time requirement of scan-line filling algorithm realized by segment

tree with universe size u. According to Section II.3, where we proved the run time

requirement of segment trees, we have

𝑇1(𝑢)𝜖𝑂(log 𝑢)

According to Section III.1, where we realized scan-line filling algorithm by segment

tree, we can see that update() is run once for each scan-line. Therefore, we have

𝑇2(𝑢) = 𝑛𝑇1(𝑢)

Where n is the total number of scan-lines. Thus, we have

𝑇2(𝑢) ∈ 𝑂(𝑢 log 𝑢)

as its run time requirement.

2. Scan-line Filling Realized by VEB Tree

Suppose 𝑇3(𝑢) is the run time requirement of VEB tree methods of universe size u.

𝑇4(𝑢) is the run time requirement of scan-line filling algorithm realized by VEB tree

with universe size u. We have proved the run time requirement of VEB tree methods:

𝑇3(𝑢)𝜖𝑂(log log 𝑢)

According to Section III.2, where we realized scan-line filling algorithm by VEB tree,

25

we can see that for each scan-line, either method insert() or method delete() is run for

at most u times, where u is the universe size. After VEB tree is updated, another loop is

traversed to maintain element sum. So,

𝑇4(𝑢) = 𝑛(𝑢𝑇3(𝑢) + 𝑢𝑇3(𝑢)) = 2𝑛𝑢𝑇3(𝑢)

Thus, we have

𝑇4(𝑢) ∈ 𝑂(𝑢2 log log 𝑢)

as its run time requirement.

3. Comparison

From the section above, we have the run time requirement of both realizations. Scan-

line filling realized by segment tree has run time requirement O(u log 𝑢), whereas the

one realized by VEB tree has run time requirement 𝑂(𝑢2 log log 𝑢).

Figure 12: Comparison of Theoretical Run Time Efficiency

26

Figure 12 shows the functions of run time requirement of the two realizations. The

blue curve represents 𝑇4(𝑢), and the green curve represents 𝑇2(𝑢). From the diagram,

we can see that the two functions intersect at point (2.72, 3.93). As we can see,

theoretically, VEB tree is faster when the universe size is small enough. If the universe

size is large, segment tree is more efficient instead.

27

V. Testing Real Time Performances of Two Realizations

1. Testing Environment

The experiments are conducted under Java environment JRE 1.8.0_161. Data is

processed by a 2-core CPU with processing speed 2.4GHz.

2. Testing Methods and Chosen Input

As an important algorithm that processes images, scan-line filling algorithm should

be able to deal with different kinds of images efficiently. For the two realizations, we

use randomly generated data to measure their normal run time requirement, as most

images are random and different. We change the universe size and the number of

regions to analyze how run times change with images of different complexity. After

testing normal situations, we test two special situations. Firstly, we test the performance

of both realizations with “neat input”: small regions that are not overlapping with each

other, such as Figure 13.

Figure 13: A Simple Example of “Neat Input”

Secondly, we test the performance of both realizations with “extreme input”: input

28

regions covering the whole universe size, such as Figure 14.

Figure 14: A Simple Example of “Extreme Input”

The chosen two special inputs will test how the two algorithms perform under special

circumstances, such as an abstract painting with regular geometry shapes, or a black

frame during a movie.

3. Results and Comparisons:

i. Random Inputs:

(1) Increasing Universe Size

We test the run time of both realizations with increasing universe size. Because of

the structure of VEB tree, which recurse with size √𝑢, the universe size is chosen as

16, 256, 65536 and 4294967296 to avoid error. The number of region is kept at 5. Run

time is measured in unit nanosecond. Because of the systematic error caused by

randomly generated data and the random error of Java, 5 trials are conducted at each

universe size. Average run times are then calculated for more accurate results.

The following table shows the experiment results of scan-line filling realized by VEB

tree.

29

Table 1: Run Time of Scan-line Filling Realized by VEB tree with different universe

size (raw data)

After calculating the average run times, we have

Table 2: Relationship between VEB Tree Universe Size and Run Time (average)

The following table shows the experiment results of scan-line filling algorithm realized

by segment tree.

Table 3: Run Time of Scan-line Filling Realized by Segment Tree with Different

Universe Size (raw data)

After calculating the average, we have

Table 4: Relationship between Segment Tree Universe Size and Run Time (average)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
16 9047784 8868091 9907680 7297633 14601008

256 14619879 18863567 19718130 22177203 15554032
65536 156101142 129969891 149082073 100753517 183936184

4294967296 Stack Overflow

Run Time (ns)
u

u Run Time (ns)
16 9944439.2

256 18186562.2
65536 143968561.4

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
16 11224192 9375988 9604911 6477120 14594444

256 12500498 14153009 18281003 10663371 20474232
65536

u
Run Time (ns)

 Stack Overflow

u Run Time (ns)
16 10255331

256 15214422.6

30

Because universe size of segment tree is not limited with relationship √𝑢, we take more

trials, and results are shown in Table 5.

Table 5: Relationship between Segment Tree Universe Size and Run Time

Plotting them in a coordinate system, we have the following functions where the orange

curve represents VEB tree and the blue curve represents segment tree.

Figure 15: Relationship between Universe Size and Run Time for both Realizations

(plotted)

As we can see from the plotted data and the trend lines that follow logarithmic

relationship from Figure 15, we can see that when universe size is small, the run time

of VEB tree is comparingly faster, though at such level of universe size, the difference

u Run Time (ns)
16 10255331

256 15214422.6
512 18244818.6

1024 15918913.6
2048 16775692

31

in run time, which is less than 1ms, is insignificant. However, when universe size

increases, the run time of VEB tree increases faster than the run time of segment tree,

which makes VEB tree inefficient when universe size becomes large. Surprisingly, as

VEB tree calls recursive methods on size √𝑢 and segment tree calls recursive methods

on size
1

2
u, VEB tree is less likely to throw StackOverFlow exception and is more

practical when universe size is too large.

(2) Increasing Number of Regions

Now, we test the run time of the two realizations with different number of regions

processed. The universe size is set at a constant of 256. The following table shows the

experiment results of scan-line filling realized by VEB tree.

Table 6: Run Times of Scan-line Filling Realized by VEB Tree with Different Number

of Regions (raw data)

After calculating the average run times, we have

Table 7: Relationship between Number of Regions and Run Time

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
10 39080568 35416982 27496171 19528181 18527977
20 28285503 33530625 27529812 35613905 49002196
30 74469241 48391735 32653498 36095956 32120986
40 85414048 34254317 54870907 42668666 45054304
50 50477066 53455934 60243208 60116028 51105168

n
Run Time (ns)

n Run Times(ns)
10 28009975.8
20 34792408.2
30 44746283.2
40 52452448.4
50 55079480.8

32

We repeat the same experiment process with segment tree. The following table shows

the experiment results of scan-line filling realized by segment tree.

Table 8: Run Times of Scan-line Filling Realized by Segment Tree with Different

Number of Regions (raw data)

After calculating the average run times, we have

Table 9: Relationship between Number of Regions and Run Time

Plotting them in a coordinate system, we have the following functions where the orange

curve represents the relationship between universe sizes and run times of VEB tree, and

the blue curve represents segment tree.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
10 10527577 18219054 24436893 8974348 18914849
20 18782336 31403038 26438122 19582745 29165502
30 24597713 37598313 38031954 29314015 36640776
40 27757094 41003847 41234001 42645281 61724642
50 37210621 46554609 46529994 27937196 39234823

n
Run Time (ns)

n Run Time (ns)
10 16214544.2
20 25074348.6
30 33236554.2
40 42872973
50 39493448.6

33

Figure 16: Relationship between Universe Size and Run Time for both Realizations

(plotted)

According to the functions and the trend lines above, we can see that the orange curve

is above the blue curve, meaning that for most cases regarding the number of regions

processed, segment tree has a higher run time efficiency than VEB tree.

ii. Neat Input

For this special case, we generate several regions that are not intersected.

Universe size is kept at a constant value of 256.

The following table shows the experiment results.

Table 10: Experiment Results of “Neat Input”

Trial 1 Trial 2 Trial 3 Average Result
VEB Tree 5 14722854 15228700 15855981 15269178.33

Segment Tree 5 11688191 7503171 11473627 10221663
VEB Tree 10 23853099 21323871 14356495 19844488.33

Segment Tree 10 36679750 19139258 20638334 25485780.67

Data Structure Number of Regions
Run Time (ns)

34

As we can see, in the first two trials, 5 small regions are processed, and then, 10 small

regions are processed. When number of regions equals 5, segment tree processes faster,

and when number of regions equals 10, VEB tree processes faster. However, the

difference in processing time, which is about 5ms, is not significant. From the data, we

can see that VEB tree is efficient when processing small regions at a large number.

Considering the realization of VEB tree, when regions are small, less insert() and

delete() methods will be called, which shorten run times significantly.

iii. Extreme Input

For this special case, we generate 2 regions that cover the whole universe.

Number of regions is kept at a constant value of 2.

The following table shows the experiment results.

Table 11: Experiment Result of “Extreme Input”

As we can see, when universe size is small, difference in run time is not significant.

However, when universe sizes increase, at the same time when the areas of regions

increase, the processing time of VEB Tree becomes inefficient, with a difference of

about 15ms in run times. VEB tree is less efficient and less useful when processing

Trial 1 Trial 2 Trial 3 Average Result
VEB Tree 256 20493103 19090028 19000182 19527771

Segment Tree 256 5571275 5083481 5024815 5226523.667
VEB Tree 16 8032811 5965531 6183787 6727376.333

Segment Tree 16 4943173 4473020 5089635 4835276

Data Structure Universe Size
Run Time (ns)

35

large regions with large areas. The realization of scan-line filling by VEB tree can

explain this phenomenon. When large regions are processed, methods insert() and

delete() are processed for more times, which significantly increase processing times.

Also, considering Figure 12, theoretically, the function that represents run time of VEB

tree has larger slope, which indicates that the run time of VEB tree increases more

significantly with the increase in universe size.

We have explained why processing speed of VEB tree can fluctuate greatly with

changes in universe sizes and region sizes. On the other hand, according to the

experiment results and Figure 12, performance of segment tree is comparably more

stable, because segment tree manages and maintains one and only one “segment” in

method update() regardless of sizes for each inputted scan-line. So, run times are not

significantly affected by special cases or properties of graphs.

36

VI. Conclusion

Truly, VEB tree is a highly efficient data structure comparing to segment tree.

Through the recursive calls upon universe size of √𝑢, this essay successfully proves

that operations of VEB tree have run time requirement O(log log 𝑛).

Because of the two loops called upon VEB tree methods when realizing scan-line

filling algorithm, this essay proves that such realization has run time requirement

O(𝑛2 log log 𝑛), which is theoretically more efficient than O(n log 𝑛) when universe

size is small but less efficient if universe size is large.

In real-life practices, the advantage of VEB tree when universe size is small is not

significant, because when universe size is small, both realizations already have very

fast run times. When universe size gets larger, the disadvantage of VEB is enlarged.

However, using VEB tree data structure solved the problem of StackOverflow that

segment tree previously had. While the problem of stack overflow limits the universe

size segment tree can maintain, such exception can be solved by using VEB tree data

structure, which makes VEB tree a more practical realization when universe size is

large.

Considering the natures of images processed by the algorithms, and according to

the testing results of neat inputs and extreme inputs, we can see that VEB tree is more

37

suitable to process small regions at a large number, while it is inefficient when

processing large regions. The performance of segment tree, on the other hand, is more

stable with different image complexity and different situations.

38

VII. Limitation and Evaluation

Because of the limitation of the use of equipment and tools, only personal laptops

can be used during experiments. Therefore, large random errors occurred as JRE 1.8.0

presents uncertainties when system times are measured in a small unit of nanosecond.

The fluctuations of CPU occupations of background software, system software and

the operating system that is hard to control manually can lead to systematic errors.

Though the accuracies and the precisions of experiment results can be improved with

more powerful computers or environments that are specifically designed for testing,

current experiment results are already presented clearly and resulted in clear

conclusions.

39

VIII. Bibliography

1. “Understanding Segment Tree Step by Step.” Understanding Segment Tree Step

by Step, Cnblogs, 1 Dec. 2013, 22:30,

www.cnblogs.com/TenosDoIt/p/3453089.html.

2. “Scanline Rendering.” Wikipedia, Wikimedia Foundation, 28 June 2017,

en.wikipedia.org/wiki/Scanline_rendering#Use_in_realtime_rendering.

3. Cormen, Thomas H., et al. Introduction to Algorithms. China Machine Press,

2016.

4. “Segment Tree Summary.” Cnblogs, Cnblogs, 19 Aug. 2017, 15:17,

www.cnblogs.com/yiyiyizqy/p/7396693.html.

5. Zhang, Kunwei. The Power of Statistics. Tsinghua University, 25 July 2013,

wenku.baidu.com/view/5c6ca2dcce2f0066f5332277.html.

6. “Interval Tree and Segment Tree.” Interval Tree and Segment Tree, CSDN, 21

Aug. 2014, 15:04, blog.csdn.net/yuzhiyuxia/article/details/38728997.

7. “Flexible Uses of Data Structures.” Flexible Uses of Data Structure, CSDN, 29

Sept. 2015, 20:17, blog.csdn.net/zhoufenqin/article/details/47809551.

8. “HDU1542 Atlantis.” HDU1542 Atlantis, CSDN, 17 Aug. 2015, 17:49,

blog.csdn.net/mengxingyuanlove/article/details/47728405.

9. “Poligon Area Filling (Sorted Edge Table).” Poligon Area Filling (Sorted Edge

Table)), CSDN, 19 Mar. 2012, 14:57, blog.csdn.net/orbit/article/details/7368996.

10. “Detailed Explanation of Segment Tree.” Detailed Explanation of Segment Tree,

http://www.cnblogs.com/TenosDoIt/p/3453089.html
http://www.cnblogs.com/yiyiyizqy/p/7396693.html

40

360doc, 26 July 2017,

www.360doc.com/content/17/0726/10/45548709_674210643.shtml.

11. “HDU 1255 Covered Area.” HDU 1255 Covered Area, CSDN, 14 Aug. 2015,

10:33, blog.csdn.net/qq_18661257/article/details/47658101.

http://www.360doc.com/content/17/0726/10/45548709_674210643.shtml

41

IX. Appendix

1. Java Implementation of VEB Node Structure

Nodes of VEB structures includes indications of the information of their subtrees

and pointers towards other VEB structures. The following Class represents a

realization of a VEB structure:

In this code segment, line 2 to 6 defined the variables that are necessary in the VEB

structure, including u, min, max, summary and cluster, as explained in the previous

chapter.

Line 8 to 18 is the constructor of the Node class, which gives the variables defined

proper values and addresses.

42

2. Java Implementation of VEB Tree Methods

i. Minimum and Maximum

As the values of the minimum and maximum data are directly indicated in the

nodes, these values can be easily returned.

Clearly, these methods have runtime efficiency O(1).

ii. Contain

To search for an element, a recursive structure should be implemented in order to

search through each layers of the trees.

Line 2 to 5 refer to the base cases of this method. Line 2 to 3 refer to the case where

the element is found, and line 4 to 5 refer to the case where one of the leaves of the tree

is reached and the element is not found.

43

iii. Insert

To insert, we not only need to recursively reach the leaves of the trees, but also

update the summary nodes while inserting. The following methods represent insert().

Line 2-3 manage a simple base case, where a node is empty. In this case, we only

need to insert the element into it by updating the min and max values. Line 5-8

manage the situation in which x is smaller than the original min. In this case, x

becomes the new min, and the original min should be inserted into the tree instead.

So, line 5-8 swap x with min. Line 10-18 manage the recursive situation when leaves

44

are not reached. Line 11-13 is run if the cluster that x belongs to is empty. In this case,

we can easily insert x into its empty cluster and update summary node. If the cluster

that x belongs to is not empty, meaning that the base case is not yet reached, we

should call the recursive method.

The running time requirement for insert is O(log log 𝑢), because either the

recursive method in line 13 or line 15 will be run, and both methods run on a universe

size of √𝑢.

iv. Delete

The following method will delete element x from node V. Here, we assume that

element x is stored in V.

45

Line 2-4 manage the base case where only one element is included in V, where we

directly set the max and min indicators to null. Line 5-10 manage another base case.

When one of the leaves of the tree is reached, but there is more than one element

stored in that leaf, there must be two elements. In this case, we either delete element 0

or element 1 of that leaf, depending on the value of x.

If base case is not reached, meaning that V contains 2 or more than 2 elements, and

u ≥ 4, line 11-29 is run. In this case, we are deleting element x in one of V’s cluster.

Line 13-16 manage the case where we are deleting the min element in V. When

deleting min, we should update min to another value and then delete the original min.

So, line 14 create an integer that stores the cluster of the smallest element other than

46

min, and in line 15-16, this element will become the new min.

Line 18 is the recursive method that delete x from its cluster. Line 19-20 update

summary node if x’s cluster becomes empty after the deletion. Line 21-29 will update

element max if deleted element is the maximum of V.

The running time requirement of delete() is still O(log log 𝑢). From the method

above, we can see that there are two recursive methods in line 18 and line 20. Both

line 18 and line 20 run on a universe size of √𝑢. If both line 18 and 20 are called, the

run time requirement will exceed O(log log 𝑢). However, line 20 is called only if the

cluster that x belongs to is empty. So, line 20 is called only when the cluster contains

a single element x before calling line 18. In this case, the recursive call of line 18 has

running time requirement O(1) due to the base case according to line 2-4. So, there

are only 2 cases: line 18 is run without running line 20, or line 20 is run with line 18

having efficiency of O(1). Therefore, the running time requirement of delete() is still

O(log log 𝑢).

47

3. Java Implementation of Segment Tree Structure

Integers left and right are the left and right end points of the part of array a node

maintains. For example, for root [1,10] in Figure 10, left will be 1 and right will be

10.

4. Java Implementation Segment Tree Methods

i. Build

The code segment above is a method that create an empty tree. Lines 3-5 handle the

base case of this recursive method. When integer left equals right, one of the leaves of

48

the tree is reached. Because we are creating an empty tree, we give integer max and

sum of that leaf the value of 0. Line 8-10 calls build() recursively. Line 9 creates left

subtrees, and line 10 creates right subtree. Line 11-12 performs “push-up”: after the

recursive calls, as we instantiated all leaves, the “push-up” procedure instantiates

parent nodes according to their children.

ii. Update

Suppose the segment tree maintain data of B[] by tree[], the following method

update() will update data in B[pos] into val by traversing tree[i].

Line 2-3 manages the base case, in which tree leaves are reached. In this case, we

need to update the value of this node into val. Line 6-7 decides whether pos belongs

to left subtree or right subtree. After such decision, line 8 and line 11 will call update()

recursively to update one of its subtree. Line 13-14 performs “push-up”. (explained in

Section III.4.i)

49

Such method has running time requirement of O(log 𝑛). As explained in Section

II.3, segment tree is a balanced binary tree. Suppose a tree with universe size u, the

height of the tree is 𝑙𝑜𝑔2𝑢. As only one branch of the tree is traversed in update(), the

running time shall not exceed 𝑙𝑜𝑔2𝑢, and therefore its running time requirement is

O(log 𝑢).

